Conceptual breakthroughs of the long noncoding RNA functional system and its endogenous regulatory role in the cancerous regime

Author:

Wang Anyou1ORCID

Affiliation:

1. Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152, USA

Abstract

Long noncoding RNAs (lncRNAs) derived from noncoding regions in the human genome were once regarded as junks with no biological significance, but recent studies have shown that these molecules are highly functional, prompting an explosion of studies on their biology. However, these recent efforts have only begun to recognize the biological significance of a small fraction (< 1%) of the lncRNAs. The basic concept of these lncRNA functions remains controversial. This controversy arises primarily from conventional biased observations based on limited datasets. Fortunately, emerging big data provides a promising path to circumvent conventional bias to understand an unbiased big picture of lncRNA biology and advance the fundamental principles of lncRNA biology. This review focuses on big data studies that break through the critical concepts of the lncRNA functional system and its endogenous regulatory roles in all cancers. lncRNAs have unique functional systems distinct from proteins, such as transcriptional initiation and regulation, and they abundantly interact with mitochondria and consume less energy. lncRNAs, rather than proteins as traditionally thought, function as the most critical endogenous regulators of all cancers. lncRNAs regulate the cancer regulatory regime by governing the endogenous regulatory network of all cancers. This is accomplished by dominating the regulatory network module and serving as a key hub and top inducer. These critical conceptual breakthroughs lay a blueprint for a comprehensive functional picture of the human genome. They also lay a blueprint for combating human diseases that are regulated by lncRNAs.

Publisher

Open Exploration Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3