Impact of mitochondrial lipid alterations on liver disease mechanisms and progression

Author:

Fàbrega Laura1ORCID,Fernández-Checa José C.2ORCID,Conde de la Rosa Laura1ORCID,Garcia-Ruiz Carmen2ORCID

Affiliation:

1. Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain; Liver Unit, Hospital Clínic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), 028029 Madrid, Spain

2. Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain; Liver Unit, Hospital Clínic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), 028029 Madrid, Spain; Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA

Abstract

Lipids are intricate biomolecules responsible for the building up of biological membranes. Besides this structural function, they also display crucial roles in signaling, acting as second messengers that activate specific pathways. Mitochondria are fundamental for cells as they participate in several pivotal functions, such as ATP synthesis, cell survival, metabolic pathways, and calcium homeostasis. Thus, the lipid composition of mitochondrial membranes can affect specific proteins and impact vital functions of mitochondria, such as oxidative phosphorylation and dynamics. The liver possesses a critical function in lipid homeostasis, involving the generation, oxidation, and trafficking of free fatty acids (FFA), triglycerides (TG), cholesterol, and bile acids (BAs). Mitochondria play a key role in lipid storage regulation in hepatocytes, which can control liver function. Their diverse tasks are affected by the lipid composition of mitochondrial membranes, characterized by low cholesterol content and enrichment of specific lipids such as cardiolipin. As mitochondria determine the bioenergetic status of cells and are key regulators of cell viability, alterations of mitochondrial lipid composition can contribute to the induction and progression of chronic diseases, including alcohol-related liver disease (ARLD) and metabolic dysfunction-associated steatotic liver disease (MASLD), two of the most common forms of liver diseases characterized by steatosis, necroinflammation, and fibrosis, which can progress to hepatocellular carcinoma (HCC). Thus, the disruption of lipid metabolism and membrane composition of mitochondria are characteristic features of cancer cells, and altered mitochondrial lipid composition may be a critical player in the progression of chronic liver diseases toward HCC. This review will address the mechanisms whereby alterations of mitochondrial lipid composition lead to the onset and progression of chronic liver diseases. Thus, a better characterization of the alterations of lipid composition in mitochondria may be a crucial step to design strategies and novel therapeutic opportunities for the treatment of MASLD and ARLD.

Publisher

Open Exploration Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3