Viral vector-based vaccines against SARS-CoV-2

Author:

Lundstrom Kenneth1ORCID

Affiliation:

1. PanTherapeutics, CH1095 Lutry, Switzerland

Abstract

Viral vectors have been frequently applied for vaccine development. It has also been the case for vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to tackle the coronavirus disease 2019 (COVID-19) pandemic. A multitude of different viral vectors have been mainly targeting the SARS-CoV-2 spike (S) protein as antigen. Intramuscular injection has been most commonly used, but also intranasal administration has been tested. Adenovirus vector-based vaccines are the most advanced with several vaccines receiving Emergency Use Authorization (EUA). The simian ChAdOx1 nCoV-19 vaccine applied as a prime-boost regimen has provided 62.1–90% vaccine efficacy in clinical trials. The Ad26.COV2.S vaccine requires only one immunization to provide protection against SARS-CoV-2. The rAd26-S/rAd5-S vaccine utilizes the Ad26 serotype for the prime immunization followed by a boost with the Ad5 serotype resulting in 91.2% vaccine efficacy. All adenovirus-based vaccines are used for mass vaccinations. Moreover, vaccine candidates based on vaccinia virus and lentivirus vectors have been subjected to clinical evaluation. Among self-replicating RNA viruses, vaccine vectors based on measles virus, rhabdoviruses, and alphaviruses have been engineered and tested in clinical trials. In addition to the intramuscular route of administration vaccine candidates based on influenza viruses and adenoviruses have been subjected to intranasal delivery showing antibody responses and protection against SARS-CoV-2 challenges in animal models. The detection of novel more transmissible and pathogenic SARS-CoV-2 variants added concerns about the vaccine efficacy and needs to be monitored. Moreover, the cause of recently documented rare cases of vaccine-induced immune thrombotic thrombocytopenia (VITT) must be investigated.

Publisher

Open Exploration Publishing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3