Plants and fungi metabolites as novel autophagy inducers and senescence inhibitors

Author:

Ofir Rivka1ORCID

Affiliation:

1. Dead Sea and Arava Science Center (DSASC), Central Arava Branch, Arava 8681500, Israel; The Regenerative Medicine & Stem Cell (RMSC) Research Center, Ben Gurion University of the Negev (BGU), Beer Sheva 84105, Israel

Abstract

Premature aging can be partially explained by inefficient autophagy (the process of cellular self-digestion that recycles intracellular components) and premature senescence (cease of cellular division without cell death activation). Autophagy and senescence are among the basic biochemical pathways in plants and fungi suggesting that some of their metabolites have the potential to act as autophagy inducers (AI) and senescence inhibitors (SI) and to inhibit inflammation and human aging. Several compounds have already been identified: trehalose and resveratrol are natural compounds that act as AI; flavonoids found in fruit and vegetables (curcumin, quercetin, and fisetin) are among the first SI discovered so far. New AI/SI can be identified using various approaches like hypothesis-driven approach for screening receptor agonists using an in-silico library of thousands of natural compounds; cheminformatics studies of phytochemicals using docking and molecular dynamics simulation, structure similarities/mimicry in vitro, “blind” high throughput screening (HTS) of libraries of natural metabolites against relevant models, and more. This article aims to promote the use of plant and fungi novel resources to identify bioactive molecules relevant for healthy aging based on the knowledge that plants and fungi use autophagy and senescence mechanisms for their own survival and homeostasis. As autophagy and senescence are interconnected, how drugs targeting autophagy, senescence, or both could contribute to healthy aging in humans will be speculated.

Publisher

Open Exploration Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3