Overview of Voltage Regulator Modules in 48 V Bus-Based Data Center Power Systems

Author:

Liang Jiawei,

Abstract

The intermediate dc bus voltage in modern data center backend power supply is evolving from conventional 12 V to 48 V. It still requires the voltage regulator modules (VRM) to feed the terminal loads such as memory and computing units operating with very high current (> 100 A/module) and very low logic voltage (0.8 V-1.8 V). This makes it challenging to optimize the design of load-side VRMs with quadrupled input voltage. This paper comprehensively reviews the state-of-the-art 48 V VRMs and categorizes them according to passive component utilization. The first category is inductive solution which is further divided into coupled-inductor-based converters and transformer-based converters. The second category named capacitive solution is further divided into resonant switched-capacitor-based converters (Resonant SCC) and hybrid switched-capacitor-based converters (Hybrid SCC). Typical topologies are discussed, analyzed and summarized to perform a comprehensive performance comparison, such that the characteristics of different VRMs can be manifested. Some design considerations are also given to facilitate the design of the practical prototypes. Moreover, opportunities and challenges in the future data center power system are presented to provide technical insights.

Publisher

China Power Supply Society

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Resonant Converter-Based 8:1 Bus Converter With 3.5 kW/in3 and 98.6%-Efficient for 48 V Data-Center Power Systems;IEEE Transactions on Power Electronics;2024-01

2. Hybrid Resonant Converter-Based 8:1 Bus Converter for 48V-to-1V Power System;2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS);2023-11-10

3. Hybrid Resonant Converter with Integrated Magnetics for 48V Data-Center Power Systems;2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS);2023-11-10

4. Study of Different Control Strategies on a Novel Hybrid Switched-Capacitor Converter;2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS);2023-11-10

5. A Resonant Switched-Capacitor LLC DCX in Data Center Applications;2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS);2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3