Data Fairness Transmission and Adaptive Duty Cycle through Machine Learning in wireless Sensor Networks

Author:

Jeon Junheon,Park Hyunjoo

Abstract

In this paper, we propose the data fairness transmission and adaptive duty cycle through machine learning in wireless sensor networks. The mechanism of this paper is mainly composed of two parts. The proposed mechanism is based on the sleep-wake structure, which is one of the methods to increase the lifespan of the entire network by efficiently using the energy of the nodes. The first is a mechanism to support priority and data fairness. To this end, data input to the node is divided into priority classes according to transmission urgency and stored. Introduces the concept of cross-layer to rearrange data destined for the same destination. In addition, we propose a fair data transmission mechanism that allows even low-priority data to participate in transmission after a certain period. The second is an adaptive duty cycle mechanism through machine learning. For this purpose, public data related to forest fires are collected. The collected data is refined into data for each forest fire location and data for each forest fire time. For the refined data, an SVM (Support Vector Machine) model of supervised learning is used for machine learning, and a mechanism for adaptively adjusting the duty cycle of each node through the trained model is proposed. The computer language used for machine learning is Python language, and Google's Psychic Learn is used for the machine learning library. It was compared with the existing MAC protocol for evaluation, and it was confirmed that excellent energy efficiency results were obtained.

Publisher

Politeknik Negeri Padang

Subject

Information Systems and Management,Statistics, Probability and Uncertainty,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DRDC: Deep reinforcement learning based duty cycle for energy harvesting body sensor node;Energy Reports;2023-12

2. EADS-EHWSNs: Efficient Energy-Based Adaptive Duty Cycle Scheme for Energy-Harvested Wireless Sensor Networks;2023 IEEE 8th International Conference on Engineering Technologies and Applied Sciences (ICETAS);2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3