Simultaneous Hydroponic Nutrient Control Automation System Based on Internet of Things

Author:

Adidrana DemiORCID,Iskandar Ade Rahmat,Nurhayati Ade,Suyatno -,Ramdhani Mohamad,Adam Kharisma Bani,Ardianto Rizki,Ekaputri Cahyantari

Abstract

Hydroponic is one of the solutions of gardening methods using water as a nutrition medium. Usually, maintaining hydroponic plant quality and water nutrients are done manually and require human efforts, such as the degree of acidity or wetness (pH), TDS (Total Dissolved Solids), and nutrient temperature. With the Internet of Things technology, we can automate hydroponic control by measuring the nutrients' TDS, pH, and temperature values and controlling water nutrition by pump nutrition needs for hydroponic plants. This research uses the NFT (Nutrient Film Technique) for the hydroponic system and uses lettuce as the nutrition parameter. The lettuce parameters are pH, TDS, and Water Temperature equal to the sensor we used in the proposed IoT system. The condition has 27 classifications, and we use this classification as a reference in decision-making, using the K-Nearest Neighbor (KNN) algorithm to activate the actuator. We improve the simultaneous actuator from previous research with specified intervals and duration to achieve ideal nutritional conditions. The other improvement is that we collect more data and more testing times. The accuracy was 91.2%, with k = 3. From the evaluation results, the accuracy of KNN is quite high and has an advantage, which has better accuracy than the other algorithms and can activate actuator simultaneously. We conclude that the hydroponic nutrient automation system using the Internet of Things method is ready for real planting use with this improvement.

Publisher

Politeknik Negeri Padang

Subject

Information Systems and Management,Statistics, Probability and Uncertainty,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Hydroponic System using IoT for Indoor Farming;2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC);2023-07-06

2. Solar-smart hydroponics farming with IoT-based AI controller with mobile app;2023 IEEE Sustainable Smart Lighting World Conference & Expo (LS18);2023-06-08

3. IoT-Based AI Controller and Mobile App for Solar-Smart Hydroponics;Advances in Engineering Research;2023

4. Design and Implementation of Smart Hydroponics Farming Using IoT-Based AI Controller with Mobile Application System;Journal of Nanomaterials;2022-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3