Toward a Hybrid Recommender System for E-learning Personnalization Based on Data Mining Techniques

Author:

Bourkoukou Outmane,El Bachari Essaid

Abstract

Personalized courseware authoring based on recommender system, which is the process of automatic learning objects selecting and sequencing, is recognized as one of the most interesting research field in intelligent web-based education. Since the learner’s profile of each learner is different from one to another, we must fit learning to the different needs of learners. In fact from the knowledge of the learner’s profile, it is easier to recommend a suitable set of learning objects to enhance the learning process. In this paper we describe a new adaptive learning system-LearnFitII, which can automatically adapt to the dynamic preferences of learners. This system recognizes different patterns of learning style and learners’ habits through testing the psychological model of learners and mining their server logs. Firstly, the device proposed a personalized learning scenario to deal with the cold start problem by using the Felder and Silverman’s model. Next, it analyzes the habits and the preferences of the learners through mining the information about learners’ actions and interactions. Finally, the learning scenario is revisited and updated using hybrid recommender system based on K-Nearest Neighbors and association rule mining algorithms. The results of the system tested in real environments show that considering the learner’s preferences increases learning quality and satisfies the learner.

Publisher

Politeknik Negeri Padang

Subject

Information Systems and Management,Statistics, Probability and Uncertainty,General Computer Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3