Application of Neural Network Time Series (NNAR) and ARIMA to Forecast Infection Fatality Rate (IFR) of COVID-19 in Brazil

Author:

Ahmar Ansari Saleh,Boj Eva

Abstract

Forecasting is a method that is often used to view future events using past time data. Past time data have useful information to use in obtaining the future. The aim of this study was to forecast infection fatality rate (IFR) of COVID-19 in Brazil using NNAR and ARIMA. ARIMA and NNAR are used because (1) ARIMA is a simple stochastic time series method that can be used to train and predict future time points and ARIMA also capable of capturing dynamic interactions when it uses error terms and observations of lagged terms; (2) the Artificial Neural Network (ANN) is a technique capable of analyzing certain non-linear interactions between input regressor and responses, and Neural Network Time Series (NNAR) is one method of ANN in which lagged time series values were used as inputs to a neural network. Data included in this study were derived from the total data of confirmed cases and the total data of death of COVID-19. The data of COVID-19 in Brazil from February 15, 2020 to April 30, 2020 were collected from the Worldometer (https://www.worldometers.info/coronavirus/) and Microsoft Excel 2013 was used to build a time-series table. Forecasting was accomplished by means of a time series package (forecast package) in R Software.  Neural Network Time Series and ARIMA models were applied to a dataset consisting of 76 days. The accuracy of forecasting was examined by means of an MSE. The forecast of IFR of COVID-19 in Brazil from May 01, 2020 to May 10, 2020 with NNAR (1,1) model was around in 6,85% and ARIMA (0,2,1) was around in 7.11%.

Publisher

Politeknik Negeri Padang

Subject

Information Systems and Management,Statistics, Probability and Uncertainty,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3