Implementation 2D Lidar and Camera for detection object and distance based on RoS

Author:

Mulyanto Agus,Borman Rohmat Indra,Prasetyawan Purwono,Sumarudin A

Abstract

The advanced driver assistance systems (ADAS) are one of the issues to protecting people from vehicle collision. Collision warning system is a very important part of ADAS to protect people from the dangers of accidents caused by fatigue, drowsiness and other human errors. Multi-sensors has been widely used in ADAS for environment perception such as cameras, radar, and light detection and ranging (LiDAR). We propose the relative orientation and translation between the two sensors are things that must be considered in performing fusion. we discuss the real-time collision warning system using 2D LiDAR and Camera sensors for environment perception and estimate the distance (depth) and angle of obstacles. In this paper, we propose a fusion of two sensors that is camera and 2D LiDAR to get the distance and angle of an obstacle in front of the vehicle that implemented on Nvidia Jetson Nano using Robot Operating System (ROS). Hence, a calibration process between the camera and 2D LiDAR is required which will be presented in session III. After that, the integration and testing will be carried out using static and dynamic scenarios in the relevant environment. For fusion, we use the implementation of the conversion from degree to coordinate. Based on the experiment, we result obtained an average of 0.197 meters

Publisher

Politeknik Negeri Padang

Subject

Information Systems and Management,Statistics, Probability and Uncertainty,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3