Early Detection of Asymptomatic Covid-19 Infection with Artificial Neural Network Model Through Voice Recording of Forced Cough

Author:

Nisa Aisyah Khairun,Wijaya I Gede Pasek Suta,Aranta Arik

Abstract

SARS-CoV-2 is a virus that spreads the infection known as COVID-19, or Coronavirus 2019. According to data from the World Health Organization as of March 15, 2021, Indonesia has 1,419,455 cumulative cases and 38,426 cumulative deaths, ranking third among countries in terms of fatalities, behind Iran and India. Because COVID-19 was disseminated through direct contact with respiratory droplets from an infected individual, it spread swiftly and widely. According to the American Centers for Disease Control and Prevention, more than 50% of transmission rates are anticipated from asymptomatic individuals. The antigen tests have an accuracy of results ranging from 80–90% and are utilized for early detection of COVID-19. The cost of the antigen test is set to increase as of September 3, 2021, with prices ranging from IDR 99.000 to IDR 109.000; however, researchers are steadfastly searching for the best alternate methods for the early diagnosis of COVID-19. According to MIT News Office, a forced cough recording can identify an asymptomatic COVID-19 infection. Through the vocal recording of a forced cough, this study uses an artificial neural network (ANN) deep learning model to identify asymptomatic COVID-19 patients. The Artificial Neural Network (ANN) can distinguish asymptomatic people from forced cough recordings with an accuracy of up to 98% and a loss value of less than 3% by employing oversampling data. This model can be applied as a free, universal method for the early identification of COVID-19 infection.

Publisher

Politeknik Negeri Padang

Subject

Information Systems and Management,Statistics, Probability and Uncertainty,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early Detection of COVID-19 Infection Without Symptoms (Asymptomatic) with a Support Vector Machine (SVM) Model Through Voice Recording of Forced Cough;Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Informatics and Computer Science);2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3