Determining the Rice Seeds Quality Using Convolutional Neural Network

Author:

Hidayat Sidiq Syamsul,Rahmawati Dwi,Prabowo Muhamad Cahyo Ardi,Triyono Liliek,Putri Farika Tono

Abstract

Seed inspection is crucial for plant nurseries and farmers as it ensures seed quality when growing seedlings. It is traditionally accomplished by expert inspectors filtering samples manually, but there are some challenges, such as cost, accuracy, and large numbers. Speed and accuracy were the main conditions for increasing agricultural productivity. Machine learning is a sub-science of Artificial Intelligence that can be applied in research on the classification of rice seed quality. The pipeline of a machine learning system is dataset collection, training, validation, and testing. Model making begins with taking data on the characteristics of rice seeds based on physical parameters in the form of seed shape and color. The dataset used is two thousand images divided into two categories, namely superior seeds and non-superior seeds. Training and Validation was conducted using the Convolutional Neural Network (CNN) algorithm with the concept of cross-validation on Google Collaboratory notebooks. The ratio split of train data and validation data in modeling from a dataset is 80:20. The result of the model formed is a model with the development of a Deep Convolutional Neural Network (Deep CNN) that can classify the digital image data of rice seeds from the results of data calls uploaded into the system. The results of the experiment conducted on 30 test data can be analyzed so that the system can classify superior and non-superior seeds with a precision value of 93% and a recall of 95%.

Publisher

Politeknik Negeri Padang

Subject

Information Systems and Management,Statistics, Probability and Uncertainty,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of advanced machine learning for prognostic analysis of drying parameters for banana slices using indirect solar dryer;Case Studies in Thermal Engineering;2024-08

2. DeepRiceTransfer: Exploiting CNN Transfer Learning for Effective Rice Variety Classification;2024 International Conference on Social and Sustainable Innovations in Technology and Engineering (SASI-ITE);2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3