Enhancing IOT Security: Leveraging Artificial Intelligence
-
Published:2024
Issue:
Volume:
Page:32-50
-
ISSN:
-
Container-title:Integrated Business Excellence- Synergizing Management, Finance, HR, and Marketing
-
language:
-
Short-container-title:
Author:
E S ChithraORCID, P H ArathiORCID, P PranithaORCID, R GeethaORCID
Publisher
QTanalytics India
Reference19 articles.
1. Aboelwafa, M. M., Seddik, K. G., Eldefrawy, M. H., Gadallah, Y., & Gidlund, M. (2020). A Machine-Learning-Based Technique for False Data Injection Attacks Detection in Industrial IoT. IEEE Internet of Things Journal, 7(9), 8462-8471. https://doi.org/10.1109/JIOT.2020.2991693 2. Alahmadi, A. A., Aljabri, M., Alhaidari, F., Alharthi, D. J., Rayani, G. E., Marghalani, L. A., Alotaibi, O. B., & Bajandouh, S. A. (2023). DDoS Attack Detection in IoT-Based Networks Using Machine Learning Models: A Survey and Research Directions. Electronics (Switzerland), 12(14). https://doi.org/10.3390/electronics12143103 3. Cäsar, M., Pawelke, T., Steffan, J., & Terhorst, G. (2022). A survey on Bluetooth Low Energy security and privacy. Computer Networks, 205. https://doi.org/10.1016/j.comnet.2021.108712 4. Cohen, T., & Widdows, D. (2014). Geometric Representations in Biomedical Informatics: Applications in Automated Text Analysis. Methods in Biomedical Informatics: A Pragmatic Approach, 99-139. https://doi.org/10.1016/B978-0-12-401678-1.00005-1 5. Džaferović, E., Sokol, A., Almisreb, A. A., & Mohd Norzeli, S. (2019). DoS and DDoS vulnerability of IoT: A review. Sustainable Engineering and Innovation, 1(1), 43- 48. https://doi.org/10.37868/sei.v1i1.36
|
|