Endo-β-mannanase and β-mannosidase activities in rice grains during and following germination, and the influence of gibberellin and abscisic acid

Author:

Wang Aoxue,Wang Xiaofeng,Ren Yanfang,Gong Xuemei,Bewley J. Derek

Abstract

Grains of indica rice (Oryza sativa cv. Peiza 67) exhibit an increase in endo-β-mannanase activity, mostly after the completion of germination. According to tissue blots, the initial increase occurs in association with the embryo, and possibly the scutellum, although the largest sustained increase in activity is in the peripheral regions of the endosperm. The aleurone layer, being the only living region of the endosperm, is presumably the site of synthesis and secretion of the enzyme into the non-living, starch-laden region. β-Mannosidase activity is low throughout germination and subsequent seedling growth, particularly in the endosperm regions. Its activity profile does not mimic that of endo-β-mannanase. In the intact grain, gibberellin (GA) causes a relatively small increase in endo-β-mannanase activity, while abscisic acid (ABA) causes a large decrease; this inhibition is overcome to a considerable extent when GA is supplied along with ABA. β-Mannosidase activity is little affected by either GA or ABA. Embryoless half-grains imbibed in water exhibit only a small increase in endo-β-mannanase activity with time of imbibition, showing the necessity for a stimulus from the embryo for this to occur. Incubating half-grains in the presence of GA results in a large increase in enzyme activity; ABA reduces the amount of activity compared to the water controls. GA is capable of reversing the inhibitory effect of ABA with respect to endo-β-mannanase activity. As in the intact grains, β-mannosidase activity in the half-grains is unaffected by either GA or ABA. It is concluded that the major site for the production of endo-β-mannanase activity is the aleurone layer, and this event is influenced by the presence of the embryo; in the absence of the latter, the increase in enzyme activity is stimulated by GA. β-Mannosidase activity is low throughout germination and post-germination, it is not influenced by GA and ABA, and thus its activity is not regulated in a coordinated manner with that of endo-β-mannanase.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3