Models based on variable fractional digestion rates to describe ruminal in situ digestion

Author:

Milgen Jaap Van,Baumont René

Abstract

Using a first-order model to describe ruminalin situdigestion implies that the rate of digestion is affected only by the quantity of potentially digestible substrate remaining. Other factors, like the microbial efficacy for digesting substrate, are assumed to be constant. However, microbes are not only the cause but also the result of digestion, being one of the digestion end-products. Two sigmoidal models (a logistic and a Gompertz-like model) were derived from a general digestion function in which the rate of digestion equals the product of the quantity of potentially digestible substrate remaining and a non-constant fractional rate of digestion (microbial efficacy function). The models were compared with a first-order model with a discrete lag time. The logistic model specifically accounted for the conversion of substrate mass to microbial mass, but did not describe microbial migration between the substrate and the ruminal fluid. In contrast, the Gompertz-like model assumed that the change in microbial efficacy was only time-dependent. There was little difference between models in estimates of scale parameters, but the asymptotic microbial efficacy was consistently higher for the logistic model than for the other models. Estimates of discrete lag time in the first-order model were biased towards obtaining values identical to the independent variable. Scale estimators appeared to be more robust than kinetic estimators. Lack-of-fit was present for most model-data set combinations. The similar patterns of residuals between models suggested that a four-parameter model may be insufficient to describe the data. It was concluded that if a four-parameter model is to be used, the model with a discrete lag time would be the least biologically appropriate.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3