Enzyme supplementation, degradation and metabolism of three U-14C-labelled cell-wall substrates in the fowl

Author:

Savory C. J.

Abstract

An experimental model is described that was used for assessing in vivo effects in fowls of exogenous enzyme supplementation on the degradation of plant cell walls to metabolizable monosaccharide residues. It was based on tube-feeding U-14C-labelled cell-wall substrates, cellulose, spinach (Spinacia oleracea) or Festuca with and without enzyme treatments, and monitoring recovery of 14C radioactivity in exhaled carbon dioxide and excreta in the following 8 h. Normal digestion of cell-wall polysaccharides by endogenous microbial activity was also studied by pretreating birds with an antibiotic mixture intended to deplete their intestinal microflora. The results of this pretreatment appeared to confirm the existence of microbial degradation of cellulose in (conditioned) fowls. Judging from differences in 14CO2 production, effects of exogenous enzyme additions were greatly enhanced with all substrates by combining them with a wet pretreatment, thereby increasing the time-period available for them to act in aqueous conditions. However, estimations of digestibilities of cellulose, hemicellulose and pectin with dry and wet treatments, based on recovery of 14C in excreta, indicated that it was only cellulose digestion that was improved by the wet pretreatment. This suggests that degradation of cellulose, which appeared to be slowest, was limited by the dry treatments, whereas that of hemicellulose and pectin was not. Respective digestibilities of these three cell-wall components, from all treatments combined, were in the proportions 1:1.5:4·2.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Reference16 articles.

1. N1methyl histidine excretion and [U-14C]amino acid oxidation in fully fed chickens from two lines selected for high and low body fat contents;Saunderson;Comparative Biochemistry and Physiology,1987

2. Comparative metabolism of L-methionine, DL-methionine and DL-2-hydroxy 4-methylthiobutanoic acid by broiler chicks

3. Urea and volatile base in the caeca and colon of the domestic fowl: The problem of their origin

4. Preparation and characterization of a [14C]cellulose suitable for human metabolic studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3