Forms of soluble iron in mouse stomach and duodenal lumen: significance for mucosal uptake

Author:

Simpson Robert J.,Peters T. J.

Abstract

Stomach contents of mice fed on a standard rodent breeding diet contained 29–733 pM-soluble non-haem-iron. A very variable percentage (3–100, mean 49·3 (se4·7),n37) of this Fe was rapidly (half-life < 1–2s) available for chelation by the strong Fe(II) chelator ferrozine, with little or no further Fe being available on addition of ascorbate. Ferrozine-available Fe could be detected in the duodenal lumen at concentrations up to 60 μM in vivo and after in vitro neutralization of stomach contents. No significant changes in quantity of stomach ferrozine-available Fe or soluble non-haem-Fe occurred in mice with adaptive enhancement of Fe absorption induced by chronic hypoxia. Electron paramagnetic resonance (e.p.r.) spectroscopy of the soluble portion of mouse stomach contents demonstrated ag= 4·3 signal (rhombic Fe(III)) equivalent to up to 20 % of soluble non-haem-Fe. The signal was unaffected by addition of excess ferrozine and increased on subsequent neutralization, suggesting redistribution of Fe from other e.p.r.-silent species. Solutions of Fe-nitrilotriacetate (NTA) (a synthetic Fe chelate used as a bioavailable, model Fe solution) were found to contain both rapidly and slowly ferrozine-available Fe (after addition of ascorbate) depending on pH, NTA:Fe ratio and the presence of Ca(II) ions. Fe-ascorbate mixtures (a model solution for Fe absorption studies) also contained ferrozine-available Fe. These results suggest the presence of Fe(II), rhombic Fe(III) and other e.p.r.-silent Fe species in the soluble fraction of mouse stomach contents. The ferrozine-available (Fe(II)) fraction is not limited by the reducing power in the diet, but by binding to ligands. Neutralization with bicarbonate leads to a loss of ferrozine-available Fe and increase in rhombic Fe(III) at the expense of both ferrozine-available and other e.p.r.-silent Fe species. The ferrozine-available Fe in mouse stomach and duodenal lumen can be related to Fe species present in model solutions used for in vitro studies of mucosal uptake mechanisms.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3