Biohydrogenation of dietaryn-3 PUFA and stability of ingested vitamin E in the rumen, and their effects on microbial activity in sheep

Author:

Chikunya S.,Demirel G.,Enser M.,Wood J. D.,Wilkinson R. G.,Sinclair L. A.

Abstract

The present study investigated the susceptibility of dietaryn-3 PUFA to ruminal biohydrogenation, the stability of ingested vitamin E in the rumen and the subsequent uptake of PUFA and vitamin E into plasma. Six cannulated sheep were assigned to six diets over five 33d periods, in an incomplete 6×5 Latin square. The diets, based on dried grass, were formulated to supply 50g fatty acids/kg DM using three lipid sources: Megalac®(calcium soap of palm fatty acid distillate; Volac Ltd, Royston, Herts., UK), linseed (formaldehyde-treated; Trouw Nutrition, Northwich, Ches., UK) and linseed–fish oil (formaldehyde-treated linseed+fish oil). The diets were supplemented with 100 or 500mg α-tocopheryl acetate/kg DM. Fat source or level of vitamin E in the diet did not alter microbial activity in the rumen. Biohydrogenation of linoleic acid (18:3n-6; 85–90%), linolenic acid (18:3n-3; 88–93%), docosahexaenoic acid (22:6n-3; 91%) and EPA (20:5n-3; 92%) was extensive. Feeding formaldehyde-treated linseed elevated concentrations of 18:3n-3 in plasma, whilst 22:6n-3 and 20:5n-3 were only increased by feeding the linseed–fish oil blend. Duodenal recovery of ingested vitamin E was high (range 0·79–0·92mg/mg fed). High dietary vitamin E was associated with increased plasma α-tocopherol (2·57v.1·46μg/ml for 500 and 100mg α-tocopheryl acetate/kg DM respectively), although all concentrations were low. Plasma vitamin E levels, however, tended to decrease as the type and quantity of PUFA in the diet increased. The present study illustrates that nutritionally beneficial PUFA in both fish and linseed oils are highly susceptible to biohydrogenation in the rumen. Although α-tocopheryl acetate resisted degradation in the rumen, plasma vitamin E status remained deficient to borderline, suggesting either that uptake may have been impaired or metabolism post-absorption increased.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3