Abstract
The present review addresses the relative contribution of diet and genotype to variability in human bone growth and mineralisation in the context of the aetiology of osteoporosis. Heritability studies indicate that 60–70 % of the variability in bone mineral mass or bone mineral density (BMD) can be accounted for by genetic variation. Cross-trait analyses suggest that a proportion of this variation reflects genetic influences on bone and body size, such as height and lean body mass. Candidate-gene studies have demonstrated associations between several genetic polymorphisms and bone mineral mass but, as yet, genotype determinations have proved unhelpful in identifying individuals at increased risk of osteoporosis. Variations in diet and other environmental factors contribute 30–40 % to total phenotypic variance in bone mineral mass or BMD. Correlations between intakes of individual nutrients and BMD have been reported, but these relationships are subject to confounding due to size. However, no specific dietary factor has been identified from prospective and twin studies as making a significant contribution to environmental variability in BMD or bone loss. This finding may reflect the difficulties in quantifying environmental exposures, both current and over a lifetime. In addition, the influence of diet on bone health may depend on the genotype of the individual. Optimisation of nutrition and lifestyle remains an attractive strategy for the reduction of fracture risk, but more research is required to fully define optimal dietary requirements.
Publisher
Cambridge University Press (CUP)
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Reference72 articles.
1. Vitamin D receptor alleles predict growth and bone density in girls Commentary
2. Adequacy of dietary mineral supply for human bone growth and mineralisation;Prentice;European Journal of Clinical Nutrition,1994
3. The hormonal regulation of longitudinal bone growth;Nilsson;European Journal of Clinical Nutrition,1994
4. The Nuclear Vitamin D Receptor: Biological and Molecular Regulatory Properties Revealed
5. Genetic determination of bone density
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献