Compensatory nutrition-directed mammary cell proliferation and lactation in rats

Author:

Kim S. H.,Moon Y. S.,Keller W. L.,Park C. S.

Abstract

The proper use of a time-dependent and controlled nutrition regimen during the hormone-sensitive growth phase before first parturition can significantly affect mammary growth and subsequent lactation performance. The objective of the present study was to determine if a compensatory nutrition regimen improves lactation performance by affecting proliferation and apoptosis of mammary epithelial cells. Forty female rats (7 weeks of age, average weight 148 g) were assigned to either (1) control, free access to diet or (2) stair-step compensatory nutrition regimen, an alternating 3–4-week schedule beginning with an energy-restricted diet (31·2% restriction) for 3 weeks, followed by the control diet for 4 weeks. Estimated milk yield was greater (P<0·05) on day 15 of lactation in the compensatory nutrition group than in the control group. Mammary cell proliferation values were 1·4- and 2·7-fold greater in mammary tissue from the compensatory group during pregnant and early lactating stages respectively, compared with those from the control group. Ornithine decarboxylase (EC4.1.1.17)mRNA was 24% higher (P<0·05) in mammary tissues of rats from the compensatory nutrition group during pregnancy than in those from the control group. These results indicate that the compensatory nutrition regimen imposed during the peripubertal growth phase stimulated mammary epithelial cell proliferation and improved lactation performance.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Reference34 articles.

1. Polyamine metabolism and function

2. Ornithine decarboxylase in rat small intestine: stimulation with food or insulin;Maudsley;American Journal of Physiology,1976

3. Apoptosis and remodeling of mammary gland tissue during involution proceeds through p53-independent pathways;Li;Cell Growth and Differentiation,1996

4. The Insulin-Like Growth Factor and Epidermal Growth Factor Families in Mammary Cell Growth in Ruminants: Action and Interaction with Hormones

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3