Residual feed intake and breeding approaches for enteric methane mitigation.

Author:

Berry D. P.,Lassen J.,Haas Y. de

Abstract

Abstract

The expanding world human population will require greater food production within the constraints of increasing societal pressure to minimize the resulting impact on the environment. Breeding goals in the past have achieved substantial gains in environmental load per unit product produced, despite no explicit inclusion of environmental load (and in most instances, even feed efficiency) in these goals. Heritability of feed intake-related traits in cattle is moderate to high, implying that relatively high accuracy of selection can be achieved with relatively low information content per animal; however, the genetic variation in feed intake independent of animal performance is expectedly less than other performance traits. Nonetheless, exploitable genetic variation does exist and, if properly utilized, could augment further gains in feed efficiency. Genetic parameters for enteric methane (CH4) emissions in cattle are rare. No estimate of the genetic variation in enteric CH4 emissions independent of animal performance exists; it is the parameters for this trait that depict the scope for genetic improvement. The approach to the inclusion of feed intake or CH4 emissions in cattle breeding goals is not clear, nor is the cost benefit of such an endeavour, especially given the cost of procuring the necessary phenotypic data.

Publisher

CABI

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3