The ascorbic acid system in seeds: to protect and to serve

Author:

De Tullio Mario C.,Arrigoni Oreste

Abstract

The ascorbic acid (ASC) system functions dynamically in seeds, although the strategies for ASC production and utilization may vary according to seed developmental and functional stages. In orthodox seeds, ASC content and ASC peroxidase activity increase during the early stages of development, then decrease during the desiccation stage, so that, at quiescence, seeds have neither ASC nor ASC peroxidase, but retain a small amount of dehydroascorbic acid (DHA) and significant activities of ASC recycling enzymes. ASC and ASC peroxidase activity re-start after a few hours from the onset of imbibition. In contrast, the ASC system is little affected during germination of recalcitrant seeds. Although the presence of the ASC system in seeds has often been considered only within the framework of seed antioxidant defences, ASC function in seeds is also likely to be related to its action as a specific co-substrate required for the activity of dioxygenases (e.g. 1-aminocyclopropane carboxylate oxidase, gibberellic acid hydroxylases and 9-cis-epoxycarotenoid dioxygenases) involved in the synthesis of ethylene, gibberellins and abscisic acid, respectively. The possible role of ASC in coordinating the activities of these key enzymes is discussed.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3