Statistical testing of range-size change as affected by the extremes of seasonal maximum temperatures

Author:

Dhanoa M.S.1ORCID,Sanderson R.2ORCID,Ellis J.L.1ORCID,Powell C.D.1ORCID,López S.3ORCID,Shepherd A.4ORCID,Cardenas L.M.5ORCID,France J.1ORCID

Affiliation:

1. Address: Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph ON, N1G 2W1, Canada

2. Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK

3. Instituto de Ganadería de Montaña (IGM), CSIC-Universidad de León, Departamento de Producción Animal, Universidad de León, E-24007, León, Spain

4. Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK

5. Rothamsted Research, North Wyke, Okehampton, Devon, UK

Abstract

Abstract Any geo-position on Earth will have its own seasonal pattern of maximum day temperatures. Climate change driven extreme temperature episodes may disturb such patterns and create temperature range changes. The significance of such changes can be tested statistically by maximum temperature range data analysis using the distribution of the ratio of range to standard deviation. Structural pattern trends, percentiles and kurtosis summaries bring out more details of seasonal temperatures.

Publisher

CABI Publishing

Subject

Nature and Landscape Conservation,General Agricultural and Biological Sciences,General Veterinary

Reference13 articles.

1. DXDENSITY procedure: Produces one-dimensional density (or violin) plots;Baird D.B.;Available at,2021

2. THE DISTRIBUTION OF THE RATIO, IN A SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION

3. Davies, O.L. (1967) Statistical Methods in Research and Production.Oliver & Boyd, Edinburgh and London.

4. The distribution of the ratio of two correlated measured variables may not always be normal: Case studies related to meat quality and animal nutrition;Dhanoa M.S.;E-planet,2018

5. A strategy for modelling heavy-tailed greenhouse gases (GHG) data using the generalised extreme value distribution: Are we overestimating GHG flux using the sample mean?

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3