Abstract
Non-native plants change the communities they integrate in multiple ways, including direct and indirect effects on co-occurring native vegetation. While direct effects are more obvious, indirect effects, i.e. those mediated by biotic interactions with other trophic levels, can also have pervasive consequences for long-term community persistence. Seed dispersal is a critical stage during the life cycle of most plants, as it lays the foundations for plant recruitment patterns and long-term vegetation dynamics. By interacting with seed-dispersing animals, primarily frugivorous birds and mammals, plants can positively or negatively affect the dispersal of co-occurring native seeds. In an increasingly invaded world, it is thus critically important to identify general trends on the direction and magnitude of these effects. This chapter reviews the empirical evidence supporting such changes and the potential underlying mechanisms driving them. While the direct impacts of plant invasions are relatively easy to document, indirect effects are much harder to detect. Nevertheless, the most important consequence of the incorporation of new fruiting plants into native communities seems to be a direct competition for the services provided by the local dispersers, negatively affecting native seed dispersal rates. However, another key message emerging from the literature is that responses are highly idiosyncratic, and usually habitat- and species-specific, and therefore resistant to broad generalizations. Fruiting phenology, and in particular the synchrony/asynchrony between the availability of native and non-native fruits, seems to be a particularly important driver of the direction of the responses (i.e. towards facilitation or competition). However, most evidence is still derived from anecdotal observations and formal community level assessments are largely missing. Similarly, how invasive plants change the emergent structure of seed dispersal networks remains uncertain, with early evidence suggesting that novel seed dispersal networks might be structurally very similar to native ones. Bringing together classic experimental designs and new technical and analytical tools to provide broad synthesis will be vital in the near future to clarify the direction, magnitude and generality of these effects.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献