Commercially feasible urban recirculating aquaculture: addressing the marine sector.

Author:

Zohar Y.,Tal Y.,Schreier H. J.,Steven C. R.,Stubblefield J.,Place A. R.

Abstract

Abstract

This chapter describes the application and optimization of the recirculating aquaculture systems (RAS) technology in the marine sector, in particular the development of urban recirculating mariculture for high-value marine fish. The system's performance and economic feasibility were tested in a pilot urban mariculture programme in the city of Baltimore (Maryland, USA), studying the Mediterranean gilthead seabream (Sparus aurata [Pagrus aurata]) as its candidate species. This fish, a non-native species in North America, commands a local retail price of up to US$20/kg. The Baltimore Urban Recirculating Mariculture System was designed to produce high-value marine fishes that cannot be farmed in net-pens or ponds, to use municipal pre-existing infrastructure and services, to have the ability to locate anywhere and to maximize the re-use of water. The life support system consisted of a particle removal microscreen drum filter, a moving bed nitrifying reactor, an ozone-based protein skimmer and a low head oxygenation unit. Conditioned artificial seawater was automatically delivered to provide the desired salinity and temperature. pH, ozone levels and photoperiod were continuously monitored and adjusted. Strict biosecurity was achieved by disinfecting all waste effluents before their discharge to the municipal sanitary sewer. Using this system, gilthead seabream of two strains were grown from 0.5 to 400 g commercial size in 268 days (first strain) and to 410 g in 232 days (second strain). Survival rates exceeded 90% and food conversion rates varied from 0.87 to 1.89, depending on fish growth. Growing densities ranged from 44 to 47 kg/m3 at 7-10% daily water exchange rates. Total ammonia and nitrite levels remained significantly below stressful concentrations. To increase the economic feasibility of the system, microbial communities associated with biofiltration were studied in an effort to improve nitrogen removal and thus maximize re-use of the saltwater. New bacterial-mediated nitrogen removal processes are described herein and addition of an anaerobic denitrification unit was also studied, both of which enhanced the ability to minimize saltwater discharge. The environmentally compatible recirculating mariculture pilot system described here can be scaled up to cost-effectively produce high-value marine fish in an urban setting.

Publisher

CABI

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3