Opportunities from second-generation biofuel technologies for upgrading lignocellulosic biomass for livestock feed.

Author:

Blümmel M.

Abstract

Abstract

Lignocellulosic biomass comprises the most abundant biopolymers on earth, cellulose, hemicelluloses, pectin and lignin. The total annual production of lignocellulosic biomass is estimated at about 10-50 billion metric tonnes of which approximately 4 billion tonnes consist of annual crop residues, the by-product of crop production. While the basic constituents of cellulose and hemicelluloses, the hexose and pentose sugars, are key nutrients in human and animal nutrition, they are locked up in a plant lignohemicellulose-cellulose matrix that is largely resistant to hydrolysis by mammalian enzymes. Mammals can partially utilize lignocellulosic biomass through microorganisms hosted in their fore-stomach (ruminants) or hindgut (monogastrics) that secrete enzymes that degrade cellulose, pectin and hemicelluloses, thereby releasing fermentable sugars. Since the early twentieth century, the abundance of lignocellulosic biomass and the potential nutritive quality of its basic sugar constituents has attracted animal nutritionists who searched for physical and chemical treatments to make those sugars more accessible. The work on second-generation biofuels (biofuels derived from lignocellulosic biomass) was motivated by reasons very similar to those of the early animal nutritionists: the abundance of lignocellulosic biomass and its content of polymerized sugars. This work has attracted US dollar multi-billion investment during the last two decades. It may be feasible to utilize spin-offs from second-generation biofuel technologies to upgrade lignocellulosic biomass for animal feeding, particularly combinations of pretreatment approaches that render the hemicellulose, pectins and celluloses more accessible to enzymes, and enzymes applications. There are numerous mechanical and chemical approaches that have been applied in second-generation biofuel technologies. Among these, fibre expansion approaches using moderate temperature and pressure in an alkaline environment (ammonia) that generate only solid substrates are promising. One such pretreatment, the Ammonia Fiber Expansion (AFEXTM; AFEXTM is a trademark of MBI, International, Lansing, Michigan, USA.) pretreatment increased mean cell wall digestibilities by rumen microorganisms on average by 80%. Steam explosion is another promising pretreatment potentially effective without pH interventions if partially hydrolysed hemicelluloses are recovered. Applications of tailor-made enzyme mixes resulted in pentose and hexose recovery from lignocellulosic biomass of more than 90%. In other words almost all sugars in cellulose and hemicelluloses can potentially be made directly accessible for mammalian digestion and absorption. However, more research is needed to understand optimal combinations of pretreatments and enzymatic digestions and to determine the economical viability of such approaches for accessing sugars in lignocellulosic biomass for ruminant and monogastric livestock and even building blocks for new food ingredients for direct human consumption. The paper draws from reviews, revisiting and recalculating published data sets and use of as yet unpublished data material.

Publisher

CABI Publishing

Subject

Nature and Landscape Conservation,General Agricultural and Biological Sciences,General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3