Production of tricarballylic acid by rumen microorganisms and its potential toxicity in ruminant tissue metabolism

Author:

Russell James B.,Forsberg Neil

Abstract

1. Rumen microorganisms convert trans-aconitate to tricarballylate. The following experiments describe factors affecting the yield of tricarballylate, its absorption from the rumen into blood and its effect on mammalian citric acid cycle activity in vitro.2. When mixed rumen microorganisms were incubated in vitro with Timothy hay (Phleum praiense L.) and 6.7 mM-trans-aconitate, 64 % of the trans-aconitate was converted to tricarballylate. Chloroform and nirate treatments inhibited methane production and increased the yield of tricarballylate to 82 and 75% respectively.3. Sheep given gelatin capsules filled with 20 g trans-aconitate absorbed tricarballylate and the plasma concentration ranged from 0.3 to 0.5 mM 9 h after administration. Feeding an additional 40 g potassium chloride had little effect on plasma tricarballylate concentrations. Between 9 and 36 h there was a nearly linear decline in plasma tricarballylate.4. Tricarballylate was a competitive inhibitor of the enzyme, aconitate hydratase (aconitase; EC 4.2.1.3), and the inhibitor constant, KI, was 0.52 mM. This KIvalue was similar to the Michaelis-Menten constant (Km) of the enzyme for citrate.5. When liver slices from sheep were incubated with increasing concentrations of tricarballylate, [I4C]acetate oxidation decreased. However, even at relatively high concentrations (8 mM), oxidation was still greater than 80% of the maximum. Oxidation of [I4C]acetate by isolated rat liver cells was inhibited to a greater extent by tricarballylate. Concentrations as low as 0.5 mM caused a 30% inhibition of citric acid cycle activity.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3