Fermentation of various glycolytic intermediates and other compounds by rumen micro-organisms, with particular reference to methane production

Author:

Czerkawski J. W.,Breckenridge Grace

Abstract

Experiments with a small-scale artificial rumen have shown that of forty-two compounds tested the majority were fermented, as judged by the production of volatile fatty acids, but methane production was associated only with the fermentation of formate, certain hydroxy-acids, pyruvic acid, primary alcohols (methanol, ethanol, propanol and butanol), glycerol and methyl compounds. With primary alcohols there was a stoichiometric relationship between methane production and the oxidation of the alcohols to the corresponding acids.The fermentation of rhamnose and 1,2-propanediol was studied in detail. With both compounds there was a temporary accumulation of lactic acid and a continuous net production of propionic acid. The initial rate of acetate production was rapid with rhamnose but decreased subsequently, whereas propionate continued to increase. With propanediol the net rate of production of acetate was slow at first and then increased. There was no increase in the production of butyric acid with either rhamnose or propanediol, and the endogenous methane production was inhibited by 20–40%. There was evidence for the formation of an unidentified compound during fermentation of rhamnose and propanediol.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3