The route of absorbed nitrogen into milk protein

Author:

Lapierre H.,Berthiaume R.,Raggio G.,Thivierge M. C.,Doepel L.,Pacheco D.,Dubreuil P.,Lobley G. E.

Abstract

AbstractA database reviewing the metabolism of nitrogen (N) compounds from absorption to milk has been compiled from 14 published and unpublished studies (33 treatments) that measured the net flux of N compounds across the splanchnic tissues in dairy cows. Apparent N digestibility averaged 0·65, with this then partitioned between 0·34 excreted in urine and 0·31 secreted as milk.Nitrogen metabolites are absorbed from the lumen of the gut into the portal vein, mainly as free amino acids (AA) and ammonia; these represented 0·58 and 0·57 of digested N, respectively. All of the ammonia absorbed was removed by the liver with, as a result, a net splanchnic flux of zero. Detoxification of ammonia by the liver and catabolism of AA results in production of urea as an end-product. Hepatic ureagenesis is a major cross-road in terms of whole body N exchange, being the equivalent of 0·81 of digested N. Therefore, salvage of a considerable part of this ureagenesis is needed to support milk protein synthesis. This salvage occurs via transfer of urea from the blood circulation into the lumen of the gut. On average, 0·47 of hepatic ureagenesis was returned to the gut via the portal-drained viscera (equivalent to 0·34 of digested N) with 0·56 of this then used for anabolic purposes e.g. as precursor N for microbial protein synthesis. On average, 0·65 of estimated digestible AA was recovered in the portal vein. This loss (0·35) is due to oxidation of certain AA across the gut wall and non-absorption of endogenous secretions. The magnitude of this loss is not uniform among AA and varies between less than 0·05 for histidine to more than 0·90 for some non-essential AA, such as glutamine.A second database (six studies, 14 treatments) was constructed to further examine the subsequent fate of absorbed essential AA. When all AA are aggregated, the liver removed, on average, 0·45 of portal absorption but this value hides the considerable variation between individual AA. Simplistically, the AA behave as two major groups: one group undergoes very little hepatic removal and includes the branched-chain AA and lysine. For the second group, removal varies between 0·35 and 0·50 of portal absorption, and includes histidine, methionine and phenylalanine. For both groups, however, the efficiency of transfer of absorbed AA into milk protein decreases with increasing supply of protein. This loss of efficiency is linked directly with increased hepatic removal of AA from the second group and, probably, increased catabolism by peripheral tissues, including the mammary gland, of AA from the first group. Therefore, we must stop using fixed factors of conversion of digestible AA to milk in our predictive schemes and acknowledge that metabolism of AA between delivery from the duodenum and conversion to milk protein will vary with nutrient supply. New information evolving from re-analysis of the literature and recent studies will allow better models to be devised for the prediction of nutrient-based responses by the lactating cow. Consideration of biological efficiency, rather than maximal milk yield, will lead to systems that are economically more sensible for the farmer and that have better environmental impacts.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3