A quantitative model of reticulo-rumen particle degradation and passage

Author:

Lirette A.,Milligan L. P.

Abstract

Labelled particles were prepared by mordanting low concentrations (0.1 or 5 g/kg dry matter) of chromium to neutral-detergent-extracted stems (1–2 mm or 10 mm in length) of bromegrass (Bromus inermis). These were used in the study of reticulo-rumen particle kinetics of four steers given bromegrass hay and from the results a quantitative model of particle digestion and passage was developed. At the 0.1 g Cr/kg concentration there was minimal interference with digestibility of the feedstuff. The ratio, dry weight of the reticulo-rumen large-particle pool (> 3.35 mm):small-particle pool (< 3.35 mm) was 2:1. It was derived from the model that volatile fatty acids (VFA) and carbon dioxide in the rumen were produced mainly from large particles, and that between 500 and 700 g/kg hay dry matter was digested in the reticulo-rumen. It was also derived from the model that a major portion, 200 (SE 110) g/kg, of the hay dry matter was rapidly solubilized and that the material leaving the reticulo-rumen was composed of small particles (500–840 g/kg), large particles (100–160 g/kg) and an unknown portion of soluble dry matter of hay (0-400 g/kg). Disappearance from the large-particle pool in the model involving the lowest Cr level was directed to formation of VFA and CO2(0.68 (SE 0.04) of total flow) to the small-particle pool (0.25 (SE 0.06) of total flow) and direct passage from the reticulo-rumen (0.07 (SE 0.002) of total flow). The disappearance from the small-particle pool was to VFA and CO2production and to the omasum accounting for 0.14 (SE 0.18) and 0.86 (SE 0.24) respectively, of the total flow. It was concluded that the low-level-mordanting technique in combination with appropriate sampling yielded a realistic quantitative description of forage breakdown and movement processes in the digestive tract of cattle.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3