Determination of nitrogen requirement for microbial growth from the effect of urea supplementation of a low N diet on abomasal N flow and N recycling in wethers and lambs

Author:

Allen Sarah A.,Miller E. L.

Abstract

1. Plasma urea entry rate, urinary urea excretion and, by difference, urea recycling in the body, together with the flow of non-ammonia N through the abomasum and digestion of dry matter (dm) before the abomasum were determined in both wethers and lambs receiving cereal-starch diets supplemented with urea to give 60–120 g crude protein (N × 6.25)/kgdm.2. Lambs excreted less urea in urine than wethers given the same diet.3. Relationships between plasma urea entry rate or urine urea excretion rate and plasma urea concentration were different for lambs compared to wethers suggesting greater conser vation of body N by renal control in lambs.4. Recycling of urea was not related to plasma urea concentration in wethers but was related exponentially in lambs, suggesting recycling is controlled rather than the result of simple diffusion from the blood to the gastro-intestinal tract.5. Abomasal non-ammonia-N flow was similar for wethers and lambs and increased linearly with urea supplementation.6.dmdigestion prior to the abomasum was not significantly altered, although there was a tendency for decreased digestion of the basal diet given to lambs.7. Maximum microbial N flow to the abomasum was estimated as 30 g N/kg organic matter (OM) fermented in the rumen.8. This work and the literature reviewed suggested maximum net microbial production can be obtained when the diet supplies an amount of fermentable N equal to the microbial N output. It is calculated the diet should supply approximately 26 g fermentable N/kg digestible OM or 1.8 g fermentable N/MJ metabolizable energy. This corresponds to a fermentable crude protein supply varying from 65 to 130 g/kg DM as digestible OM content increases from 400 to 800 g/kg DM.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3