Hydrothermal time analysis of seed dormancy in true (botanical) potato seeds

Author:

Alvarado Veria,Bradford Kent J.

Abstract

As seed dormancy is released within a seed population, both the rate and percentage of germination increase progressively with increasing dose of a dormancy-breaking treatment or condition. Population-based models can account for this behaviour on the basis of shifting response thresholds as dormancy is alleviated. In particular, hydrothermal time analysis of germination sensitivity to water potential (Ψ) and temperature (T) can describe these features of seed behaviour. We used the hydrothermal time model to analyse the effects of dormancy-breaking treatments on germination of dormant true (botanical) potato (Solanum tuberosumL.) seeds (TPS). After-ripening (37°C and 4% seed moisture content) of TPS for 7 or 30 days partially or fully alleviated primary dormancy. The median base water potential required to prevent germination [Ψb(50)] decreased from –0.25 MPa in control seeds to –0.87 MPa and –1.83 MPa after 7 and 30 days of after-ripening, respectively. In contrast, the base temperature for germination (Tb) was relatively unaffected (0–3.3°C). Fluridone (50 μM), an inhibitor of abscisic acid (ABA) biosynthesis, also promoted germination of dormant TPS and lowered Ψb(50), indicating a role forde novosynthesis of ABA during dormancy maintenance. Moist chilling (3 days at 4°C) or gibberellin (100 μM) alleviated secondary dormancy and lowered Ψb(50) values from –0.08 MPa to –0.36 and –0.87 MPa, respectively. The hydrothermal time model allows quantification of dormancy levels and explains why changes in germination speed and percentage are closely correlated during dormancy alleviation.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3