Butyrylated starch is less susceptible to enzymic hydrolysis and increases large-bowel butyrate more than high-amylose maize starch in the rat

Author:

Bajka Balázs H.,Topping David L.,Cobiac Lynne,Clarke Julie M.

Abstract

Large-bowel fermentation of resistant starch produces SCFA that are believed to be important in maintaining visceral function. High-amylose maize starch (HAMS) and acylated starches are sources of resistant starch and are an effective means of increasing colonic SCFA. Cooking increases digestibility of starches but its effects on the capacity of these starches to raise large-bowel SCFA are unknown. We have examined the effects of cooking of HAMS and butyrylated HAMS (HAMSB) on amylolysis in vitro and their capacity to raise caeco-colonic SCFA in rats. The starches were boiled in excess water and microwaved, followed by drying at 100°C. Cooking increased in vitro glucose release for both starches but significantly less from HAMSB. Rat growth rates were unaffected when fed cooked resistant starch. Digesta pH was increased in the caecum and proximal colon of rats fed cooked HAMS. Distal colonic pH was highest in rats fed cooked HAMSB. Factorial analyses (2×2) of caecal SCFA pools showed significant differences between HAMS and HAMSB, and that cooking significantly lowered caecal butyrate pools. Portal venous butyrate concentrations were higher in both HAMSB groups than those fed HAMS. The data suggest that HAMSB is less susceptible to in vitro amylolysis than HAMS following cooking and delivers more butyrate to rat caecum than HAMS. This attribute may be useful in food applications for specific delivery of SCFA to the colon. Preparation of carbohydrates to simulate human food in animal experiments may be important to assess nutritional and physiological effects accurately.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3