Soybean galactinol synthase forms fagopyritol B1 but not galactopinitols: substrate feeding of isolated embryos and heterologous expression

Author:

Obendorf Ralph L.,Odorcic Silvia,Ueda Takashi,Coseo Mark P.,Vassallo Elizabeth

Abstract

Soybean (Glycine max (L.) Merrill) seeds accumulate sucrose, raffinose, stachyose and lesser amounts of galactopinitol A, galactopinitol B and fagopyritol B1 in axis and cotyledon tissues as part of the seed maturation process. Somatic embryos appear to be deficient in D-pinitol and galactopinitols, indicating a lack of synthesis by embryo tissues in vitro. Isolated immature soybean zygotic embryos were fed myo-inositol, D-pinitol, D-chiro-inositol and sucrose, individually and in combination, to evaluate the role of substrate availability on galactosyl cyclitol accumulation during precocious maturation. Feeding myo-inositol transiently doubled galactinol accumulation with little effect on other soluble carbohydrates. Feeding D-pinitol increased free D-pinitol 8-fold, galactopinitol A 4.5-fold and galactopinitol B 4.2-fold. Stachyose concentration was 2-fold higher in cotyledons after feeding D-pinitol than after feeding D-chiro-inositol. Feeding D-chiro-inositol increased fagopyritol B1 17-fold in the axis and 7-fold in the cotyledons, but did not increase other soluble carbohydrates. Feeding D-pinitol and D-chiro-inositol together reduced uptake of D-chiro-inositol and steady-state accumulation of galactinol and galactopinitols by 50%, compared to feeding D-pinitol alone. Increasing sucrose concentration from 0 to 200 mM had no effect. Recombinant soybean galactinol synthase, heterologously expressed in Escherichia coli, catalysed the synthesis of fagopyritol B1 and galactinol, but not galactopinitols. These results were consistent with the following interpretations: D-pinitol and D-chiro-inositol were transported from maternal tissues and not synthesized in the embryo, D-chiro-inositol uptake into embryos may be reduced by D-pinitol, fagopyritol B1 was synthesized by galactinol synthase while galactopinitols were not, and fagopyritol B1 and galactopinitols accumulated in response to the supply of free D-chiro-inositol and D-pinitol to embryos.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3