Altering nutrient utilization in animals through transgenesis

Author:

Ward Kevin A

Abstract

AbstractImproved domestic animal productivity is necessary in order to provide for an increasing world population over the next two to three decades and such improvement would be aided by an increase in the efficiency of nutrient utilization. This can be achieved by conventional genetic selection protocols but progress by this approach is slow. A more rapid but as yet largely unproven technique is the direct modification of the genome which can be achieved by the transfer of recombinant DNA to the nuclei of early embryos. This new technology is potentially powerful because it allows the direct transfer of genes without regard to inter-species barriers to breeding. However, it raises a new set of problems associated with the integration and expression of the foreign genetic information in the new genome. In this review the application of the technology to increasing nutrient utilization and increased productivity are discussed. Two areas have received substantial attention in the 15 years since the technique was first applied to domestic animals. First, the current status of the modification of growth hormone levels to improve productivity and feed utilization efficiency is reviewed, with current results suggesting that several of the projects may soon be approaching field trial status. Second, the introduction of novel biochemical pathways to domestic animals to provide them with different sources of the substrates required for growth and production is discussed. Recent results obtained in the introduction of a cysteine biosynthetic pathway to animals is reviewed. While this line of research remains some distance from commercial application, it provides a useful example of the powerful possibilities inherent in the new technology. However, it also serves to highlight some of the difficulties that might be expected as new genes are expressed to produce enzymes that must fit compatibly with existing animal biochemistry.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3