Determinants of surface membrane and transverse-tubular excitability in skeletal muscle: implications for high-intensity exercise

Author:

Lindinger Michael I.

Abstract

AbstractThe fatigue of high-intensity exercise is now believed to reside primarily within the excitation–contraction coupling processes associated with the plasma membrane of skeletal muscle (sarcolemm) and calcium-mediated events leading to myofilament sliding. This paper summarizes recent developments and advances in the identification of factors that contribute to changes in sarcolemmal excitability of mammalian skeletal muscle as a consequence of high-intensity exercise. There is an increasing recognition of the probable role that is played by the transverse tubular system (T-system), a system that comprisesc. 80% of the total sarcolemmal surface capable of ion exchange. Furthermore, the fluid within the T-system has limited access to interstitial fluid bathing myofibres; hence, T-system fluid is probably markedly different from interstitial fluid during high-intensity exercise. Mechanically skinned fibre preparation is providing many new insights into functions of the surface membrane and T-system in fatigue. A scenario is developed whereby accumulation of potassium within the T-system ([K+]o) contributes to reduced membrane excitability, as well as lowering of T-system sodium and chloride, concomitant with loss of intracellular potassium ([K+]i) and accumulation of intracellular sodium ([Na+]) and chloride ([Cl]). Lowering the [Na+]o/[Na+]iratio and raising myoplasmic [Na+]ihave been shown to decrease membrane excitability and impair action potential propagation. Maintained high [Cl]omay also have a protective effect in maintaining membrane excitability, and this effect appears to be very pronounced in the presence of raised [K+]o. In contrast to dogma associating high [H+] to fatigue, recent studies have also shown that induced acidosis that results in increased [H+]oand [H+]irestores force production in muscles and skinned fibres fatigued by intermittent tetanic stimulation. This effect may be due to a decrease in surface membrane Clpermeability that serves to restore membrane excitability. During high-intensity exercise, simultaneous changes in trans-membrane ion concentrations and membrane ion conductances may serve to reduce impairment of membrane excitability that provides for a maintained, though reduced, contractile function.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3