Insulin resistance and glucose-induced thermogenesis in critical illness

Author:

Carlson Gordon L.

Abstract

Critical illness is associated with a marked increase in metabolic rate and progressive wasting, despite aggressive nutritional support. The metabolic events which are responsible for these phenomena are unclear, but are characterised by marked impairment of the anabolic effects of insulin on glucose metabolism and excessive activation of the sympathetic nervous system. It has been suggested that critical illness may be associated with impaired carbohydrate oxidation and a marked increase in the loss of heat energy associated with glucose administration (glucose-induced thermogenesis). This situation may result in impaired efficiency of nutrient assimilation. Studies employing combinations of nutrient infusions both at clinically-relevant rates and in association with euglycaemic hyperinsulinaemia have, however, demonstrated that nutrient-induced thermogenesis is unaffected in critical illness in human subjects, and that defective glucose utilization occurs as a consequence of impaired insulin-mediated glucose storage rather than oxidation. Although the cellular and molecular mechanisms underlying these changes are controversial, the recent validation of a human model of insulin resistance in critical illness should provide a means of studying this response in future, and allow the identification of therapeutic targets. This information should increase the efficacy of nutritional support in some of our most seriously-ill patients.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Reference77 articles.

1. Thermic effect of feeding in man: Increased plasma norepinephrine levels following glucose but not protein or fat consumption

2. Mechanisms of hepatic and peripheral insulin resistance during acute infections in humans;Virkamaki;Journal of Clinical Endocrinology and Metabolism,1992

3. Substrate utilisation after injury;Saeed;International Journal of Orthopaedic Trauma,1995

4. Insulin. Its role in the thermic effect of glucose.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3