Potential for recombination and creation of new viruses in transgenic plants expressing viral genes: real or perceived risk?

Author:

Fuchs M.

Abstract

Abstract

The development of virus-resistant transgenic crops has widened the horizons of virus control. A common approach to confer virus resistance relies on the transfer and expression of viral genes in susceptible plants. The successful application of this strategy is illustrated by the commercialization of virus-resistant transgenic squash and papaya in the USA. Since virus-resistant transgenic plants express viral sequences, environmental safety issues have been raised, in particular on the potential for recombination and creation of new viruses. It is conceivable that recombinant viruses can arise from exchange of genetic information as a consequence of RNA recombination between transgene transcripts and the genome of challenging viruses. Resulting chimeric RNA may lead to viable recombinant viruses with identical biological properties as parental lineages or altered biologic al properties, including increased pathogenicity, expanded host range and changes in vector relationship. The development of recombinant viruses has been extensively documented in transgenic plants expressing viral genes, primarily under conditions of high to moderate selective pressure in confined environments. Under field conditions with limited, if any, selective pressure, no recombinant virus has been found at detectable levels even in transgenic perennial plants established in experimental sites over extended periods of time. So far, although the potential for recombination is real, extensive research indicates that the creation of recombinant viruses in transgenic crops expressing viral genes does not seem to exceed baseline events in conventional plants, thus providing valuable insights into the safe release of virus-resistant transgenic plants and suggesting a reasonable certainty of limited or no hazard.

Publisher

CABI

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel Approaches for Viral Disease Management;Grapevine Viruses: Molecular Biology, Diagnostics and Management;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3