Iron speciation at physiological pH in media containing ascorbate and oxygen

Author:

Dorey Clare,Cooper Chris,Dickson Dominic P. E.,Gibson John F.,Simpson Robert J.,Peters Timothy J.

Abstract

The stability of iron ascorbate solutions was investigated, under both anaerobic and aerobic conditions, with the Fe2+ and Fe3+ indicators, respectively ferrozine and mimosine, at different pH values. The species present under the differing conditions were investigated by electron paramagnetic resonance (EPR) and Mössbauer spectroscopy and by gel-filtration chromatography. At physiological pH (6·8–7·4) iron ascorbate solutions rapidly form mononuclear chelatable Fe3+ species as reflected by indicator studies and EPR. Mössbauer spectroscopy fails to detect any Fe2+ species. EPR studies show a time-dependent decrease in rhombic Fe3+, particularly in oxygenated buffers, consistent with a conversion to polynuclear Fe. O2 uptake studies show that the conversion of Fe2+ to Fe3+ in Fe–ascorbate solutions at pH > 7·0 was accompanied by rapid O2 consumption but preceded depletion of ascorbate. Addition of high concentrations of mannitol (50–200 mM) reduces the O2 consumption and partly stabilizes the rapidly chelatable Fe form. Gel filtration studies show that the oxidation of Fe–ascorbate solutions at pH 7·4 is accompanied by an increase in the apparent relative molecular mass of the Fe, presumably due to Fe polymer formation. These studies indicate the inherent instability of Fe–ascorbate solutions above neutral pH and clearly have important implications in the use of ascorbate in studies of Fe physiology.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3