The heat-shock response of developing barley aleurone layers

Author:

Harju Melissa A.,deSouza Sunita,Brodl Mark R.

Abstract

AbstractAleurone layers of mature germinating barley (Hordeum vulgare, cv. Himalaya) grains respond to heat shock by synthesizing heat-shock proteins (HSPs) and by selectively suppressing the synthesis of proteins normally translated by endoplasmic reticulum (ER)-bound ribosomes. To determine if this also was the case during seed development, we investigated the synthesis of proteins translated by ER-bound ribosomes in heat-shocked aleurone layers isolated from developing barley grains. The optimal induction temperature for the heat shock response in developing aleurone layers was 37.5°C, and temperatures above 42°C inhibited translation. HSPs with apparent molecular masses of 71.1, 66.2, 57.8, 19.1 and 18.8 kDa were induced. Other studies have shown that, in gibberellic acid (GA)-induced aleurone layers from mature barley grains, these temperatures were 40°C and 45°C, respectively. Furthermore, in developing aleurone layers, mRNAs encoding proteins translated by ER-bound ribosomes (mRNAs for a lipid transfer protein and a putative amylase/protease inhibitor) remained stable during heat shock. The ER membranes themselves remained in stacks, but the lumen became distended with electron-dense material. Heat shock prevented the movement of proteins from the ER into the rest of the endomembrane pathway. In contrast, other studies show that in mature, GA-induced aleurone layers, heat shock dissociates ER stacks and blocks translation, but the processing of secretory proteins in the endomembrane pathway is not inhibited. The observation that the same tissue at different developmental stages may respond differently to heat shock indicates that components of the heat-shock response are developmentally regulated. This system provides an opportunity to better understand the nuances of the heat-shock response, especially the post-transcriptional gene regulatory mechanisms that occur.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemical Composition in Barley Grains and Malt Quality;Advanced Topics in Science and Technology in China;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3