General Regression Neural Network and Monte Carlo Simulation Model for Survival and Growth of Salmonella on Raw Chicken Skin as a Function of Serotype, Temperature, and Time for Use in Risk Assessment†

Author:

OSCAR THOMAS P.1

Affiliation:

1. U.S. Department of Agriculture, Agricultural Research Service, USDA/1890 Center of Excellence in Poultry Food Safety Research, Room 2111, Center for Food Science and Technology, University of Maryland, Eastern Shore, Princess Anne, Maryland 21853, USA

Abstract

A general regression neural network (GRNN) and Monte Carlo simulation model for predicting survival and growth of Salmonella on raw chicken skin as a function of serotype (Typhimurium, Kentucky, and Hadar), temperature (5 to 50°C), and time (0 to 8 h) was developed. Poultry isolates of Salmonella with natural resistance to antibiotics were used to investigate and model survival and growth from a low initial dose (<1 log) on raw chicken skin. Computer spreadsheet and spreadsheet add-in programs were used to develop and simulate a GRNN model. Model performance was evaluated by determining the percentage of residuals in an acceptable prediction zone from −1 log (fail-safe) to 0.5 log (fail-dangerous). The GRNN model had an acceptable prediction rate of 92% for dependent data (n = 464) and 89% for independent data (n = 116), which exceeded the performance criterion for model validation of 70% acceptable predictions. Relative contributions of independent variables were 16.8% for serotype, 48.3% for temperature, and 34.9% for time. Differences among serotypes were observed, with Kentucky exhibiting less growth than Typhimurium and Hadar, which had similar growth levels. Temperature abuse scenarios were simulated to demonstrate how the model can be integrated with risk assessment, and the most common output distribution obtained was Pearson5. This study demonstrated that it is important to include serotype as an independent variable in predictive models for Salmonella. Had a cocktail of serotypes Typhimurium, Kentucky, and Hadar been used for model development, the GRNN model would have provided overly fail-safe predictions of Salmonella growth on raw chicken skin contaminated with serotype Kentucky. Thus, by developing the GRNN model with individual strains and then modeling growth as a function of serotype prevalence, more accurate predictions were obtained.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3