Detection by Hyperspectral Imaging of Shiga Toxin–Producing Escherichia coli Serogroups O26, O45, O103, O111, O121, and O145 on Rainbow Agar

Author:

WINDHAM WILLIAM R.1,YOON SEUNG-CHUL1,LADELY SCOTT R.2,HALEY JENNIFER A.1,HEITSCHMIDT JERRY W.1,LAWRENCE KURT C.1,PARK BOSOON1,NARRANG NEELAM2,CRAY WILLIAM C.2

Affiliation:

1. 1Quality and Safety Assessment Research Unit, Richard B. Russell Research Center, Agricultural Research Service

2. 2Outbreak Section of the Eastern Laboratory, Food Safety Inspection Service, U.S. Department of Agriculture, Athens, Georgia 30605, USA

Abstract

The U.S. Department of Agriculture, Food Safety Inspection Service has determined that six non-O157 Shiga toxin–producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) are adulterants in raw beef. Isolate and phenotypic discrimination of non-O157 STEC is problematic due to the lack of suitable agar media. The lack of distinct phenotypic color variation among non-O157serogroups cultured on chromogenic agar poses a challenge in selecting colonies for confirmation. In this study, visible and near-infrared hyperspectral imaging and chemometrics were used to detect and classify non-O157 STEC serogroups grown on Rainbow agar O157. The method was first developed by building spectral libraries for each serogroup obtained from ground-truth regions of interest representing the true identity of each pixel and thus each pure culture colony in the hyperspectral agar-plate image. The spectral library for the pure-culture non-O157 STEC consisted of 2,171 colonies, with spectra derived from 124,347 of pixels. The classification models for each serogroup were developed with a k nearest-neighbor classifier. The overall classification training accuracy at the colony level was 99%. The classifier was validated with ground beef enrichments artificially inoculated with 10, 50, and 100 CFU/ml STEC. The validation ground-truth regions of interest of the STEC target colonies consisted of 606 colonies, with 3,030 pixels of spectra. The overall classification accuracy was 98%. The average specificity of the method was 98% due to the low false-positive rate of 1.2%. The sensitivity ranged from 78 to 100% due to the false-negative rates of 22, 7, and 8% for O145, O45, and O26, respectively. This study showed the potential of visible and near-infrared hyperspectral imaging for detecting and classifying colonies of the six non-O157 STEC serogroups. The technique needs to be validated with bacterial cultures directly extracted from meat products and positive identification of colonies by using confirmatory tests such as latex agglutination tests or PCR.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3