Reduction by Competitive Bacteria of Listeria monocytogenes in Biofilms and Listeria Bacteria in Floor Drains in a Ready-to-Eat Poultry Processing Plant

Author:

ZHAO TONG1,PODTBURG TERESA C.2,ZHAO PING1,CHEN DONG1,BAKER DAVID A.3,CORDS BRUCE2,DOYLE MICHAEL P.1

Affiliation:

1. 1Center for Food Safety, University of Georgia, Griffin, Georgia 20333

2. 2Ecolab, 655 Lone Oak Drive, Eagan, Minnesota 55121

3. 3David Baker & Associates, 2630 Braffington Court, Atlanta, Georgia 30350, USA

Abstract

The ability of Listeria monocytogenes and two competitive exclusion (CE) bacteria, Lactococcus lactis subsp. lactis strain C-1-92 and Enterococcus durans strain 152, to form biofilms on coupons composed of different materials (stainless steel, plastic, rubber, glass, and silicone) was determined at 4 and 8°C. Biofilm characteristics were determined by scanning electron microscopy. L. monocytogenes produced well-formed biofilms within 24 h at 37°C on coupon surfaces. Treating Listeria-laden biofilms with the CE isolates individually at either 4 or 8°C for 3 weeks substantially reduced or eliminated listeriae in the biofilms. Treatment with L. lactis subsp. lactis strain C-1-92 and E. durans strain 152 at 4°C for 3 weeks reduced the population of L. monocytogenes in a biofilm from 7.1 to 7.7 log CFU/cm2 to 3.0 to 4.5 log CFU/cm2 and to 3.1 to 5.2 log CFU/cm2, respectively, and treatment at 8°C for 3 weeks reduced L. monocytogenes from 7.5 to 8.3 log CFU/cm2 to 2.4 to 3.5 log CFU/cm2 and to 3.8 to 5.2 log CFU/cm2, respectively, depending on the coupon composition. These two CE isolates were combined and evaluated for control of Listeria bacteria in floor drains of a ready-to-eat poultry processing plant. The results revealed that treating the floor drains with CE four times in the first week eliminated detectable Listeria bacteria from five of six drains, and the drains remained free of detectable Listeria bacteria for 13 weeks following the first four treatments. These studies indicate that CE can effectively reduce Listeria contamination in biofilms and in flow drains of a plant producing ready-to-eat poultry products.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3