Heat Resistance of Escherichia coli O157:H7 in a Nutrient Medium and in Ground Beef Patties as Influenced by Storage and Holding Temperatures

Author:

JACKSON TIMOTHY C.1,HARDIN MARGARET D.1,ACUFF GARY R.1

Affiliation:

1. Institute of Food Science and Engineering, Center for Food Safety, Department of Animal Science, The Texas A&M University System, College Station, Texas 77843-2471, USA

Abstract

Stationary-phase cultures of Escherichia coli O157:H7 were inoculated into tryptic soy broth, sealed in vials, and stored at −18°C for 1, 8, and 15 days, or 3 or 15°C for 3, 6, and 9 h. Thermal resistance was determined at 55°C. Each storage treatment was repeated with additional holding at 23 or 30°C for 1, 2, 3, or 4 h prior to heating to simulate potential temperature abuse during handling. Cultures under treatments enabling the growth of E. coli O157:H7 were generally more heat sensitive than those held at temperatures which restricted growth or enabled growth to stationary phase. Cultures stored frozen (−18°C) without holding at elevated temperatures had greater heat resistance than those stored under refrigeration (3°C) or at 15°C. Subsequent holding of frozen cultures at 23 or 30°C resulted in a decrease in heat resistance. To determine whether these responses would be observed under typical commercial preparation procedures, ground beef patties were inoculated with E. coli O157:H7 and stored at 3 or 15°C for 9 h or at −18°C for 8 d and then held at 21 or 30°C for 0 or 4 h. Patties were grilled to an internal temperature of 54.4°C (130°F), 62.8°C (145°F), or 68.3°C (155°F). Cultures were most resistant in frozen patties, while cultures in patties stored at 15°C were the most heat sensitive. Holding patties at 21 or 30°C prior to grilling resulted in increased sensitivity. Storage and holding temperatures similar to those encountered in food service may influence the ability of E. coli O157:H7 to survive heat treatments.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3