Biofilm Development and Sanitizer Inactivation of Listeria monocytogenes and Salmonella typhimurium on Stainless Steel and Buna-n Rubber

Author:

RONNER AMY B.1,WONG AMY C. L.1

Affiliation:

1. Department of Food Microbiology and Toxicology, Food Research Institute, 1925 Willow Drive, University of Wisconsin, Madison, Wisconsin 53706

Abstract

Biofilm formation by seven strains of Listeria monocytogenes and one strain of Salmonella typhimurium on stainless steel and Buna-n rubber was examined under two nutrient conditions. The type of surface, nutrient level, and organism influenced biofilm development and production of extracellular materials. Buna-n had a strong bacteriostatic effect on L. monocytogenes, and biofilm formation on Buna-n under low nutrient conditions was reduced for four of the seven strains tested. Buna-n was less bacteriostatic toward S. typhimurium. It inhibited the growth of several other pathogens to varying degrees. An ethylene propylene diamine monomer rubber was less inhibitory than Buna-n, and Viton rubber had no effect. The effectiveness of sanitizers on biofilm bacteria was examined. Biofilms were challenged with four types of detergent and nondetergent sanitizers. Resistance to sanitizers was strongly influenced by the type of surface. Bacterial biofilm populations on stainless steel were reduced 3–5 log by all the sanitizers, but those on Buna-n were resistant to these sanitizers and were reduced less than 1–2 log. In contrast, planktonic (suspended) bacteria were reduced 7–8 log by these sanitizers. Chlorine and anionic acid sanitizers generally removed extracellular materials from biofilms better than iodine and quaternary ammonium detergent sanitizers. Scanning electron microscopy demonstrated that biofilm cells and extracellular matrices could remain on sanitized biofilm cells and extracellular matrices could remain surfaces from which no viable cells were recovered.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3