Reduction of Salmonella Enteritidis Population Sizes on Almond Kernels with Infrared Heat

Author:

BRANDL MARIA T.1,PAN ZHONGLI23,HUYNH STEVEN1,ZHU YI4,MCHUGH TARA H.2

Affiliation:

1. 1Produce Safety and Microbiology Research Unit and

2. 2Processed Foods Research Unit, Agricultural Research Services, U.S. Department of Agriculture, Albany, California 94710

3. 3Department of Biological and Agricultural Engineering and

4. 4Department of Food Science and Technology, University of California, Davis, California 95616, USA

Abstract

Catalytic infrared (IR) heating was investigated to determine its effect on Salmonella enterica serovar Enteritidis population sizes on raw almond kernels. Using a double-sided catalytic IR heating system, a radiation intensity of 5,458 W/m2 caused a fast temperature increase at the kernel surface and minimal temperature differences between the top and bottom kernel surfaces. Exposure of dry kernels to IR heat for 30, 35 and 45 s resulted in maximum kernel surface temperatures of 90, 102, and 113°C, and when followed by immediate cooling at room temperature, yielded a 0.63-, 1.03-, and 1.51-log reduction in S. enterica population sizes, respectively. The most efficacious decontamination treatment consisted of IR exposure, followed by holding of the kernels at warm temperature for 60 min, which effected a greater than 7.5-log reduction in S. enterica on the kernels. During that treatment, the kernel surface temperature rose to 109°C and gradually decreased to 80°C. Similar IR and holding treatments with lower maximum kernel surface temperatures of 104 and 100°C yielded reductions of 5.3 and 4.2 log CFU/g kernel, respectively. During these treatments, moisture loss from the kernels was minimal and did not exceed 1.06%. Macroscopic observations suggested that kernel quality was not compromised by the IR-holding combination treatment, as skin morphology, meat texture, and kernel color were indistinguishable from those of untreated kernels. Our studies indicate that IR heating technology is an effective dry pasteurization for raw almonds.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3