Rapid and Specific Detection of the Thermostable Direct Hemolysin Gene in Vibrio parahaemolyticus by Loop-Mediated Isothermal Amplification

Author:

NEMOTO JIRO1,SUGAWARA CHIYO1,AKAHANE KENJI1,HASHIMOTO KEIJI1,KOJIMA TADASHI1,IKEDO MASANARI1,KONUMA HIROTAKA2,HARA-KUDO YUKIKO3

Affiliation:

1. 1Eiken Chemical Company Ltd., 143, Nogi, Nogi-machi, shimotsuga-gun, Tochigi 329-0114, Japan

2. 2Department of Fisheries, School of Marine Science and Technology, Tokai University, 3-20-1 Shimizuorido, Shizuoka 424-8610, Japan

3. 3Division of Microbiology, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan

Abstract

Several investigators have reported that thermostable direct hemolysin (TDH) and TDH-related hemolysin are important virulence factors of Vibrio parahaemolyticus, but it has been difficult to detect these factors rapidly in seafood and other environmental samples. A novel nucleic acid amplification method, termed the loop-mediated isothermal amplification (LAMP), which amplifies DNA with high specificity and rapidity under isothermal conditions, was applied. In this study, we designed tdh gene-specific LAMP primers for detection of TDH-producing V. parahaemolyticus. The specificity of this assay was evaluated with 32 strains of TDH-producing V. parahaemolyticus, one strain of TDH-producing Grimontia hollisae, 10 strains of TDH-nonproducing V. parahaemolyticus, and 94 strains of TDH-nonproducing bacteria, and the sensitivity was high enough to detect one cell per test. Moreover, to investigate the detection of TDH-producing V. parahaemolyticus in oysters, the LAMP assay was performed with enrichment culture in alkaline peptone water of oyster samples inoculated with TDH-producing V. parahaemolyticus and TDH-nonproducing V. parahaemolyticus and V. alginolyticus after enrichment in alkaline peptone water. These results suggest that the LAMP assay targeting tdh gene has high sensitivity and specificity and is useful to detect TDH-producing V. parahaemolyticus in oyster after enrichment.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3