A Novel Method for Predicting Anisakid Nematode Infection of Atlantic Cod Using Rough Set Theory

Author:

Wąsikowska Barbara1,Sobecka Ewa2,Bielat Iwona2,Legierko Monika2,Więcaszek Beata2

Affiliation:

1. Faculty of Economics and Management, University of Szczecin, 71-101 Szczecin, Adama Mickiewicza st. 64, Poland; and

2. Department of Hydrobiology, Ichthyology and Biotechnology of Breeding, West Pomeranian University of Technology, 71-550 Szczecin, Kazimierza Królewicza st. 4, Poland (ORCID: http://orcid.org/0000-0002-0899-720X [E.S.])

Abstract

ABSTRACT Atlantic cod (Gadus morhua L.) is one of the most important fish species in the fisheries industries of many countries; however, these fish are often infected with parasites. The detection of pathogenic larval nematodes is usually performed in fish processing facilities by visual examination using candling or by digesting muscles in artificial digestive juices, but these methods are both time and labor intensive. This article presents an innovative approach to the analysis of cod parasites from both the Atlantic and Baltic Sea areas through the application of rough set theory, one of the methods of artificial intelligence, for the prediction of food safety in a food production chain. The parasitological examinations were performed focusing on nematode larvae pathogenic to humans, e.g., Anisakis simplex, Contracaecum osculatum, and Pseudoterranova decipiens. The analysis allowed identification of protocols with which it is possible to make preliminary estimates of the quantity and quality of parasites found in cod catches before detailed analyses are performed. The results indicate that the method used can be an effective analytical tool for these types of data. To achieve this goal, a database is needed that contains the patterns intensity of parasite infections and the conditions of commercial fish species in different localities in their distributions.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3