Characterization of Bacteriophages Targeting Non-O157 Shiga Toxigenic Escherichia coli

Author:

LITT PUSHPINDER KAUR1,SAHA JOYJIT1,JARONI DIVYA1

Affiliation:

1. Food and Agricultural Products Center and Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74075, USA (ORCID: http://orcid.org/0000-0002-2673-0728 [P.K.L.]; http://orcid.org/0000-0002-7994-0550 [D.J.])

Abstract

ABSTRACT Non-O157 Shiga toxigenic Escherichia coli (STEC) are an important group of foodborne pathogens, implicated in several outbreaks and recalls in the past 2 decades. It is therefore crucial to devise effective control strategies against these pathogens. Bacteriophages present an attractive alternative to conventional pathogen control methods in the food industry. Bacteriophages, targeting non-O157 STEC (O26, O45, O103, O111, O121, O145), were isolated from beef cattle operations in Oklahoma. Their host range and lytic ability were determined against several (n = 21) non-O157 STEC isolates, by using the spot-on-lawn assay. Isolated phages were purified, and their morphology was determined under a transmission electron microscope. Infection kinetics of selected phages (n = 19), particularly adsorption rate, rise period, latent period, and burst size, were determined. Phages were also evaluated for stability at a wide pH range (1 to 11) and temperature range (−80 to 90°C). In total, 45 phages were isolated and classified into Myoviridae, Siphoviridae, or Tectiviridae. The phages had a latent period between 8 and 37 min, a rise period between 19 and 40 min, and a large burst size (12 to 794 virions per infected cell), indicating high lytic activity. Tested phages were stable at pH 5 to 9 for 24 h, whereas a decrease in phage titer was observed at pHs 1, 2, and 11. Phages were stable at 40 and 60°C, except for O103-specific phages. At 70°C, all the phages lost viability after 20 min, except three phages targeting O26 and O121 and one phage targeting O45 and O111 STEC, which remained viable for 60 min. All the phages lost activity after 10 min at 90°C, except one each of O26 and O121 STEC–infecting phages that remained viable for 60 min. Phages remained stable for 90 days under refrigerated (4°C) and frozen (−20 and −80°C) storage. Characterization of phages, targeting diverse non-O157 STEC serotypes, could help in the development of effective biocontrol strategies for this group of pathogens in the food industry.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Reference79 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3