Affiliation:
1. Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju 54896, South Korea
Abstract
ABSTRACT
The insecticidal toxicities of essential oils and other active components extracted from Eucalyptus dives leaves (as well as structural analogues) were studied against stored-product insects, Plodia interpunctella and Tribolium castaneum. 3-Carvomenthenone was purified from E. dives oil, and the structures were elucidated by electron ionization mass spectra, 1H-nuclear magnetic resonance (NMR), 13C-NMR, heteronuclear multiple quantum coherence, 1H-1H correlation spectroscopy, and distortionless enhancement by polarization transfer NMR. Using the fumigant method against P. interpunctella larvae and adults, cyclohexenone exhibited the strongest toxicity (50% lethal dose [LD50] against larvae and adults, 2.45 and 3.63 μg/cm3), followed by methylcyclohexenone (2.95 and 4.24 μg/cm3), seudenone (3.02 and 4.44 μg/cm3), and 3-carvomenthenone (52.4 and 68.7 μg/cm3). Using the contact method, cyclohexenone (LD50 against larvae and adults, 17.25 and 19.35 μg/cm2) exhibited the most potent toxicities against T. castaneum larvae and adults, followed by methylcyclohexenone, seudenone, and 3-carvomenthenone. No functional radical on the backbone (2-cyclohexen-1-one) was more toxic than other chemicals. Structure-activity relationships between 3-carvomenthenone analogues and toxicities indicated that the toxicity of 3-carvomenthenone, cyclohexenone, methylcyclohexenone, and seudenone might be conferred through the dermal organs of T. castaneum and P. interpunctella. This study indicates that E. dives oil, 3-carvomenthenone, cyclohexenone, methylcyclohexenone, and seudenone have potential as natural agents to control stored-product insects.
Publisher
International Association for Food Protection
Subject
Microbiology,Food Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献